tensor.reduce_log_sum
tensor.reduce_log_sum
fn reduce_log_sum(self: @Tensor<T>, axis: usize, keepdims: bool) -> Tensor<T>;
Computes the log sum of the input tensor's elements along the provided axes.
Args
self
(@Tensor<T>
) - The input tensor.axis
(usize
) - The dimension to reduce.keepdims
(bool
) - If true, retains reduced dimensions with length 1.
Panics
Panics if axis is not in the range of the input tensor's dimensions.
Returns
A new Tensor<T>
instance with the specified axis reduced by summing its elements.
Examples
use core::array::{ArrayTrait, SpanTrait};
use orion::operators::tensor::{TensorTrait, Tensor, FP16x16Tensor};
use orion::numbers::{FixedTrait, FP16x16};
fn reduce_log_sum() -> Tensor<FP16x16> {
let mut sizes = ArrayTrait::new();
sizes.append(2);
sizes.append(2);
sizes.append(2);
let mut data = ArrayTrait::new();
data.append(FixedTrait::new_unscaled(1, false));
data.append(FixedTrait::new_unscaled(2, false));
data.append(FixedTrait::new_unscaled(3, false));
data.append(FixedTrait::new_unscaled(4, false));
data.append(FixedTrait::new_unscaled(5, false));
data.append(FixedTrait::new_unscaled(6, false));
data.append(FixedTrait::new_unscaled(7, false));
data.append(FixedTrait::new_unscaled(8, false));
let tensor = TensorTrait::<FP16x16>::new(sizes.span(), data.span());
We can call `reduce_log_sum` function as follows.
return tensor.reduce_log_sum(axis: 2, keepdims: false);
}
>>> [[0x11938, 0x1f203], [0x265d9, 0x2b540]]
Last updated
Was this helpful?