main
Ask or search…
⌃K
Links
Comment on page

tensor.argmin

fn argmin(self: @Tensor<T>, axis: usize, keepdims: Option<bool>, select_last_index: Option<bool>) -> Tensor<usize>;
Returns the index of the minimum value along the specified axis.

Args

  • self(@Tensor<T>) - The input tensor.
  • axis(usize) - The axis along which to compute the argmin.
  • keepdims(Option<bool>) - If true, retains reduced dimensions with length 1. Defaults to true.
  • select_last_index(Option<bool>) - If true, the index of the last occurrence of the minimum value is returned. Defaults to false.

Panics

  • Panics if axis is not in the range of the input tensor's dimensions.

Returns

A new Tensor<T> instance containing the indices of the minimum values along the specified axis.

Examples

Case 1: argmin with default parameters
use array::{ArrayTrait, SpanTrait};
​
use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor};
​
fn argmin_example() -> Tensor<usize> {
let tensor = TensorTrait::<u32>::new(
shape: array![2, 2, 2].span(), data: array![0, 1, 2, 3, 4, 4, 5, 5].span(),
);
​
// We can call `argmin` function as follows.
return tensor.argmin(axis: 2, keepdims: Option::None(()), select_last_index: Option::None(()));
}
>>> [[[0,0],[0,0]]]
​
Case 2: argmin with keepdims set to false
use array::{ArrayTrait, SpanTrait};
​
use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor};
​
fn argmin_example() -> Tensor<usize> {
let tensor = TensorTrait::<u32>::new(
shape: array![2, 2, 2].span(), data: array![0, 1, 2, 3, 4, 4, 5, 5].span(),
);
​
// We can call `argmin` function as follows.
return tensor
.argmin(axis: 2, keepdims: Option::Some(false), select_last_index: Option::None(()));
}
>>> [[0,0],[0,0]]
Case 3: argmin with select_last_index set to true
use array::{ArrayTrait, SpanTrait};
​
use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor};
​
fn argmin_example() -> Tensor<usize> {
let tensor = TensorTrait::<u32>::new(
shape: array![2, 2, 2].span(), data: array![0, 1, 2, 3, 4, 4, 5, 5].span(),
);
​
// We can call `argmin` function as follows.
return tensor
.argmin(axis: 2, keepdims: Option::None(()), select_last_index: Option::Some(true));
}
>>> [[[0,0],[1,1]]]