tensor.bitwise_or
#tensor.bitwise_or
fn bitwise_or(self: @Tensor<T>, other: @Tensor<T>) -> Tensor<usize>;
Computes the bitwise OR of two tensors element-wise. The input tensors must have either:
Exactly the same shape
The same number of dimensions and the length of each dimension is either a common length or 1.
Args
self
(@Tensor<T>
) - The first tensor to be comparedother
(@Tensor<T>
) - The second tensor to be compared
Panics
Panics if the shapes are not equal or broadcastable
Returns
A new Tensor<T>
with the same shape as the broadcasted inputs.
Example
use core::array::{ArrayTrait, SpanTrait};
use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor};
fn or_example() -> Tensor<usize> {
let tensor_1 = TensorTrait::<u32>::new(
shape: array![3, 3].span(), data: array![0, 1, 2, 3, 4, 5, 6, 7, 8].span(),
);
let tensor_2 = TensorTrait::<u32>::new(
shape: array![3, 3].span(), data: array![0, 1, 2, 0, 4, 5, 0, 6, 2].span(),
);
return tensor_1.bitwise_or(@tensor_2);
}
>>> [0,1,2,3,4,5,6,7,10]
Last updated
Was this helpful?