tensor.onehot

   fn onehot(self: @Tensor<T>, depth: usize, axis: Option<usize>, values: Span<usize>) -> Tensor<usize>;

Produces one-hot tensor based on input.

Args

  • self(@Tensor<T>) - The input tensor.

  • depth(usize) - Scalar or Rank 1 tensor containing exactly one element, specifying the number of classes in one-hot tensor.

  • axis(Option<bool>) - Axis along which one-hot representation in added. Default: axis=-1.

  • values(Span<usize>) - Rank 1 tensor containing exactly two elements, in the format [off_value, on_value]

Panics

  • Panics if values is not equal to 2.

Returns

A new Tensor<T> one-hot encode of the input tensor.

Type Constraints

Constrain input and output types to fixed point tensors.

Example

use core::array::{ArrayTrait, SpanTrait};

use orion::operators::tensor::{TensorTrait, Tensor, FP8x23Tensor};
use orion::numbers::{FP8x23, FixedTrait};

fn onehot_example() -> Tensor<FP8x23> {
    let tensor = TensorTrait::<FP8x23>::new(
        shape: array![2,2].span(),
        data: array![
            FixedTrait::new_unscaled(0, false),
            FixedTrait::new_unscaled(1, false),
            FixedTrait::new_unscaled(2, false),
            FixedTrait::new_unscaled(3, false),
        ]
            .span(),
    );    

    return tensor.onehot(depth: 3, axis: Option::None(()), values: array![0, 1].span());
}
>>> [[1. 0. 0.]
     [0. 1. 0.]
     [0. 0. 1.]]

Last updated