nn.softmax_zero

   fn softmax_zero(tensor: @Tensor<T>, axis: usize) -> Tensor<T>;

Applies the Softmax zero function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1 while keeping the zero elements to zero.

The softmax zero on the set $\mathbf{x} = (x_1, ..., x_n)$ is given by :

softmax zero(xi)={0xi=0exixSexotherwise\text{softmax zero}(x_i) = \begin{cases} 0 & \qquad x_i = 0 \\ \frac{e^{x_i}}{ \sum_{x \in {S}} e^{x}} & \qquad \text{otherwise} \end{cases}

where $S$ in a subset of $\mathbf{x}$ given by

 S={(x1,,xk)1kn,xj0 for 1jk}\ S = \{ (x_1, \ldots, x_k) \mid 1 \leq k \leq n, x_j \neq 0 \text{ for } 1 \leq j \leq k \}

Args

  • tensor(@Tensor<T>) - The input tensor.

  • axis(usize) - The axis along which to compute the softmax zero.

Returns

A Tensor of fixed point numbers with the same shape than the input Tensor.

Type Constraints

Constrain input and output types to fixed point tensors.

Examples

Last updated