tree_ensemble_regressor.predict
fn predict(regressor: TreeEnsembleRegressor<T>, X: Tensor<T>) -> (Span<usize>, MutMatrix::<T>);
Tree Ensemble regressor. Returns the regressed values for each input in N.
Args
self
: TreeEnsembleRegressor - A TreeEnsembleRegressor object.X
: Input 2D tensor.
Returns
Regressed values for each input in N
Type Constraints
TreeEnsembleRegressor
and X
must be fixed points
Examples
use orion::numbers::FP16x16;
use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor};
use orion::operators::ml::{NODE_MODES, TreeEnsembleAttributes, TreeEnsemble};
use orion::operators::ml::tree_ensemble::tree_ensemble_regressor::{
TreeEnsembleRegressor, POST_TRANSFORM, TreeEnsembleRegressorTrait, AGGREGATE_FUNCTION
};
use orion::operators::matrix::{MutMatrix, MutMatrixImpl};
fn tree_ensemble_regressor_helper(
agg: AGGREGATE_FUNCTION
) -> (TreeEnsembleRegressor<FP16x16>, Tensor<FP16x16>) {
let n_targets: usize = 1;
let aggregate_function = agg;
let nodes_falsenodeids: Span<usize> = array![4, 3, 0, 0, 0, 2, 0, 4, 0, 0].span();
let nodes_featureids: Span<usize> = array![0, 2, 0, 0, 0, 0, 0, 2, 0, 0].span();
let nodes_missing_value_tracks_true: Span<usize> = array![0, 0, 0, 0, 0, 0, 0, 0, 0, 0].span();
let nodes_modes: Span<NODE_MODES> = array![
NODE_MODES::BRANCH_LEQ,
NODE_MODES::BRANCH_LEQ,
NODE_MODES::LEAF,
NODE_MODES::LEAF,
NODE_MODES::LEAF,
NODE_MODES::BRANCH_LEQ,
NODE_MODES::LEAF,
NODE_MODES::BRANCH_LEQ,
NODE_MODES::LEAF,
NODE_MODES::LEAF
]
.span();
let nodes_nodeids: Span<usize> = array![0, 1, 2, 3, 4, 0, 1, 2, 3, 4].span();
let nodes_treeids: Span<usize> = array![0, 0, 0, 0, 0, 1, 1, 1, 1, 1].span();
let nodes_truenodeids: Span<usize> = array![1, 2, 0, 0, 0, 1, 0, 3, 0, 0].span();
let nodes_values: Span<FP16x16> = array![
FP16x16 { mag: 17462, sign: false },
FP16x16 { mag: 40726, sign: false },
FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 47240, sign: true },
FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 36652, sign: true },
FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 0, sign: false }
]
.span();
let target_ids: Span<usize> = array![0, 0, 0, 0, 0, 0].span();
let target_nodeids: Span<usize> = array![2, 3, 4, 1, 3, 4].span();
let target_treeids: Span<usize> = array![0, 0, 0, 1, 1, 1].span();
let target_weights: Span<FP16x16> = array![
FP16x16 { mag: 5041, sign: false },
FP16x16 { mag: 32768, sign: false },
FP16x16 { mag: 32768, sign: false },
FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 18724, sign: false },
FP16x16 { mag: 32768, sign: false }
]
.span();
let base_values: Option<Span<FP16x16>> = Option::None;
let post_transform = POST_TRANSFORM::NONE;
let tree_ids: Span<usize> = array![0, 1].span();
let mut root_index: Felt252Dict<usize> = Default::default();
root_index.insert(0, 0);
root_index.insert(1, 5);
let mut node_index: Felt252Dict<usize> = Default::default();
node_index
.insert(2089986280348253421170679821480865132823066470938446095505822317253594081284, 0);
node_index
.insert(2001140082530619239661729809084578298299223810202097622761632384561112390979, 1);
node_index
.insert(2592670241084192212354027440049085852792506518781954896144296316131790403900, 2);
node_index
.insert(2960591271376829378356567803618548672034867345123727178628869426548453833420, 3);
node_index
.insert(458933264452572171106695256465341160654132084710250671055261382009315664425, 4);
node_index
.insert(1089549915800264549621536909767699778745926517555586332772759280702396009108, 5);
node_index
.insert(1321142004022994845681377299801403567378503530250467610343381590909832171180, 6);
node_index
.insert(2592987851775965742543459319508348457290966253241455514226127639100457844774, 7);
node_index
.insert(2492755623019086109032247218615964389726368532160653497039005814484393419348, 8);
node_index
.insert(1323616023845704258113538348000047149470450086307731200728039607710316625916, 9);
let atts = TreeEnsembleAttributes {
nodes_falsenodeids,
nodes_featureids,
nodes_missing_value_tracks_true,
nodes_modes,
nodes_nodeids,
nodes_treeids,
nodes_truenodeids,
nodes_values
};
let mut ensemble: TreeEnsemble<FP16x16> = TreeEnsemble {
atts, tree_ids, root_index, node_index
};
let mut regressor: TreeEnsembleRegressor<FP16x16> = TreeEnsembleRegressor {
ensemble,
target_ids,
target_nodeids,
target_treeids,
target_weights,
base_values,
n_targets,
aggregate_function,
post_transform
};
let mut X: Tensor<FP16x16> = TensorTrait::new(
array![3, 3].span(),
array![
FP16x16 { mag: 32768, sign: true },
FP16x16 { mag: 26214, sign: true },
FP16x16 { mag: 19660, sign: true },
FP16x16 { mag: 13107, sign: true },
FP16x16 { mag: 6553, sign: true },
FP16x16 { mag: 0, sign: false },
FP16x16 { mag: 6553, sign: false },
FP16x16 { mag: 13107, sign: false },
FP16x16 { mag: 19660, sign: false },
]
.span()
);
(regressor, X)
}
fn test_tree_ensemble_regressor_SUM() -> MutMatrix::<FP16x16> {
let (mut regressor, X) = tree_ensemble_regressor_helper(AGGREGATE_FUNCTION::SUM);
let mut res = TreeEnsembleRegressorTrait::predict(regressor, X);
res
}
>>>
[0.5769, 0.5769, 0.5769]
Last updated